

15ME64

Sixth Semester B.E. Degree Examination, Aug./Sept. 2020 Design of Machine Elements - II

Time: 3 hrs .
Max. Marks: 80
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Use of hand book is permitted.

Module-1

1 a. Write the difference between a straight and curved beam.
(06 Marks)
b. The cross-section of a curved link is a symmetrical trapezium 50 mm deep. The inner width and outer width are 50 mm and 25 mm respectively. Find the maximum stress when the link carries a load of 15 kN which passes through the centre of curvature of link. The internal radius of link as 50 mm .
(10 Marks)

OR

2 A tube with 50 mm and 75 mm as inner and outer diameter respectively, is reinforced by shrinking a jacket of outer diameter 10 mm . The compound tube is to withstand an internal pressure of 35 MPa . The shrinkage allowance is such that the maximum tangential stress in each tube has same magnitude. Calculate shrinkage pressure and the original dimensions of the tube. Assume E $=207 \mathrm{kN} / \mathrm{mm}^{2}$.
(16 Marks)

Module-2

3 a. Explain the effect of slip, creep and centrifugal tension in flat belt drive.
(03 Marks)
b. Specify he details of a V-belt drive for a $10 \mathrm{~kW}, 1160 \mathrm{rpm}$ induction motor operating a fan at approximately 400 rpm . The centre distance between pulley is to be close to $1 \mathrm{~m}, \alpha=34^{\circ}$.
(13 Marks)

OR

4 a. One helical spring is nested inside another; the dimensions are as tabulated. Both springs have the same free length and carry a total maximum load of 2500 N .

	Outer spring	Inner spring
No. of active coils	6	10
Wire diameter, mm	12.5	9.00
Mean coil diameter, mm	100	70

Determine : (i) The maximum load carried by each spring.
(ii) The total deflection of each spring
(iii)The maximum stress in two springs.

Take $\mathrm{G}=83 \mathrm{GN} / \mathrm{m}^{2}$.
(08 Marks)
b. A truck spring has 12 numbers of leaves, two of which are full length leaves. The spring supports are 1.05 m apart and the central bond is 85 mm wide. The central load is to be 5.4 kN with a permissible stress of $280 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the thickness and width of the steel spring leaves. The ratio of the total depth to the width of the spring is 3 . Also determine the deflection of the spring. Take $=\mathrm{E}=0.26 \times 10^{6} \mathrm{MPa}$.
(08 Marks)

Module-3

A pair of spur gear with 20° full depth teeth transmits 20 kW at 1500 rpm to the pinion. The speed reduction ratio is 4 . Take material for pinion a gear having a permissible static stress of $220 \mathrm{~N} / \mathrm{mm}^{2}$ and $193.2 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. You are required to check the design for dynamic load and prolonged wear.

15ME64

OR

6 Design a pair of bevel gears at acute angle to transmit 40 kW at 1200 rpm of the pinion with the velocity ratio of 6 . Assume C-45 steel for both gears having permissible stress of $233.4 \mathrm{~N} / \mathrm{mm}^{2}$, BHN 200. Take number of teeths on pinion as $25 . \alpha=14 \frac{1}{2}, \theta=45^{\circ}$. Consider continuous service of medium shocks.
(16 Marks)

Module-4

7 Design a worm gear drive to transmit 5 kW at 1200 rpm . The speed ratio is to be 25 and the centre distance 250 mm . The worm wheel is made from phosphor bronze with permissible strength of $82.4 \mathrm{~N} / \mathrm{mm}^{2}$ and hardness 100 BHN , while the worm is made from steel 45 with permissible stress $233.4 \mathrm{~N} / \mathrm{mm}^{2}$ and 200 BHN . Load factor $\left(\mathrm{k}_{l}\right)=1.25, \alpha=14.5^{\circ}$. ($\mathbf{1 6} \mathbf{~ M a r k s)}$

OR

8 a. A differential bond brake shown in Fig.Q8(a) operates on a drum of diameter 600 mm . The bond is $3.2 \times 100 \mathrm{~mm}$ and coefficient of friction is $0.22 . \theta=300^{\circ}$.
(i) Find the force required at the end of operating lever, when the bond is subjected to a stress of $55 \mathrm{~N} / \mathrm{mm}^{2}$.
(ii) Find the torque applied to the brake drum shaft.

(08 Marks)
b. A cone clutch has a semi-cone angle of 12° to transmit 10 kW of 750 rpm . The width of the face is one fourth of the mean diameter of friction lining. The normal intensity of pressure between the contacting surface is not to exceed $0.85 \mathrm{~N} / \mathrm{mm}^{2}$. Assume uniform wear criterion. $\mu=0.2$. Calculate dimensions of clutch. Allowable shear stress for shaft material is $40 \mathrm{~N} / \mathrm{mm}^{2}$.
(08 Marks)

Module-5

9 a. Derive Petroff's equation of lightly loaded bearing.
(08 Marks)
b. A roller bearing has a dynamic load capacity of 26 kN . The desired life for 90% of the bearing is 8000 hr and the speed is 300 rpm . Calculate the equivalent radial load that the bearing can carry.
(08 Marks)

OR

10 a. List the factors to be considered while selecting bearing material.
(06 Marks)
b. A full bearing 200 mm diameter by 200 mm long supports a radial load 45 kN . The journal rotates at 1200 rpm and $\mathrm{r} / \mathrm{c}=1000$. The viscosity of the oil at its operating temperature of $80^{\circ} \mathrm{C}$ is $0.1766 \mathrm{~N} / \mathrm{m}^{2}$, ambient temperature is $20^{\circ} \mathrm{C}$. Using Raimondi and Boyd curve determine the oil film thickness, coefficient of friction, heat generated in the bearing, Heat dissipated.
(10 Marks)

